Header logo is


2009


no image
Automatic detection of preclinical neurodegeneration: Presymptomatic Huntington disease

Klöppel, S., Chu, C., Tan, G., Draganski, B., Johnson, H., Paulsen, J., Kienzle, W., Tabrizi, S., Ashburner, J., Frackowiak, R.

Neurology, 72(5):426-431, February 2009 (article)

Abstract
Background: Treatment of neurodegenerative diseases is likely to be most beneficial in the very early, possibly preclinical stages of degeneration. We explored the usefulness of fully automatic structural MRI classification methods for detecting subtle degenerative change. The availability of a definitive genetic test for Huntington disease (HD) provides an excellent metric for judging the performance of such methods in gene mutation carriers who are free of symptoms. Methods: Using the gray matter segment of MRI scans, this study explored the usefulness of a multivariate support vector machine to automatically identify presymptomatic HD gene mutation carriers (PSCs) in the absence of any a priori information. A multicenter data set of 96 PSCs and 95 age- and sex-matched controls was studied. The PSC group was subclassified into three groups based on time from predicted clinical onset, an estimate that is a function of DNA mutation size and age. Results: Subjects with at least a 33% chance of developing unequivocal signs of HD in 5 years were correctly assigned to the PSC group 69% of the time. Accuracy improved to 83% when regions affected by the disease were selected a priori for analysis. Performance was at chance when the probability of developing symptoms in 5 years was less than 10%. Conclusions: Presymptomatic Huntington disease gene mutation carriers close to estimated diagnostic onset were successfully separated from controls on the basis of single anatomic scans, without additional a priori information. Prior information is required to allow separation when degenerative changes are either subtle or variable.

ei

Web [BibTex]

2009


Web [BibTex]


no image
Enumeration of condition-dependent dense modules in protein interaction networks

Georgii, E., Dietmann, S., Uno, T., Pagel, P., Tsuda, K.

Bioinformatics, 25(7):933-940, February 2009 (article)

Abstract
Motivation: Modern systems biology aims at understanding how the different molecular components of a biological cell interact. Often, cellular functions are performed by complexes consisting of many different proteins. The composition of these complexes may change according to the cellular environment, and one protein may be involved in several different processes. The automatic discovery of functional complexes from protein interaction data is challenging. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically mine for dense modules with interesting profiles. Results: Given a weighted protein interaction network, our method discovers all protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy, which allows us to exploit the density criterion in an efficient way. Our experiments show that the novel approach is feasible and produces biologically meaningful results. In comparative validation studies using yeast data, the method achieved the best overall prediction performance with respect to confirmed complexes. Moreover, by enhancing the yeast network with phenotypic and phylogenetic profiles and the human network with tissue-specific expression data, we identified condition-dependent complex variants.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Prototype Classification: Insights from Machine Learning

Graf, A., Bousquet, O., Rätsch, G., Schölkopf, B.

Neural Computation, 21(1):272-300, January 2009 (article)

Abstract
We shed light on the discrimination between patterns belonging to two different classes by casting this decoding problem into a generalized prototype framework. The discrimination process is then separated into two stages: a projection stage that reduces the dimensionality of the data by projecting it on a line and a threshold stage where the distributions of the projected patterns of both classes are separated. For this, we extend the popular mean-of-class prototype classification using algorithms from machine learning that satisfy a set of invariance properties. We report a simple yet general approach to express different types of linear classification algorithms in an identical and easy-to-visualize formal framework using generalized prototypes where these prototypes are used to express the normal vector and offset of the hyperplane. We investigate nonmargin classifiers such as the classical prototype classifier, the Fisher classifier, and the relevance vector machine. We then study hard and soft margin cl assifiers such as the support vector machine and a boosted version of the prototype classifier. Subsequently, we relate mean-of-class prototype classification to other classification algorithms by showing that the prototype classifier is a limit of any soft margin classifier and that boosting a prototype classifier yields the support vector machine. While giving novel insights into classification per se by presenting a common and unified formalism, our generalized prototype framework also provides an efficient visualization and a principled comparison of machine learning classification.

ei

PDF Web DOI [BibTex]

PDF Web DOI [BibTex]


no image
The DICS repository: module-assisted analysis of disease-related gene lists

Dietmann, S., Georgii, E., Antonov, A., Tsuda, K., Mewes, H.

Bioinformatics, 25(6):830-831, January 2009 (article)

Abstract
The DICS database is a dynamic web repository of computationally predicted functional modules from the human protein–protein interaction network. It provides references to the CORUM, DrugBank, KEGG and Reactome pathway databases. DICS can be accessed for retrieving sets of overlapping modules and protein complexes that are significantly enriched in a gene list, thereby providing valuable information about the functional context.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Large Margin Methods for Part of Speech Tagging

Altun, Y.

In Automatic Speech and Speaker Recognition: Large Margin and Kernel Methods, pages: 141-160, (Editors: Keshet, J. and Bengio, S.), Wiley, Hoboken, NJ, USA, January 2009 (inbook)

ei

Web [BibTex]

Web [BibTex]


no image
Motor Control and Learning in Table Tennis

Mülling, K.

Eberhard Karls Universität Tübingen, Gerrmany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Hierarchical Clustering and Density Estimation Based on k-nearest-neighbor graphs

Drewe, P.

Eberhard Karls Universität Tübingen, Germany, 2009 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
mGene: accurate SVM-based gene finding with an application to nematode genomes

Schweikert, G., Zien, A., Zeller, G., Behr, J., Dieterich, C., Ong, C., Philips, P., De Bona, F., Hartmann, L., Bohlen, A., Krüger, N., Sonnenburg, S., Rätsch, G.

Genome Research, 19(11):2133-43, 2009 (article)

Abstract
We present a highly accurate gene-prediction system for eukaryotic genomes, called mGene. It combines in an unprecedented manner the flexibility of generalized hidden Markov models (gHMMs) with the predictive power of modern machine learning methods, such as Support Vector Machines (SVMs). Its excellent performance was proved in an objective competition based on the genome of the nematode Caenorhabditis elegans. Considering the average of sensitivity and specificity, the developmental version of mGene exhibited the best prediction performance on nucleotide, exon, and transcript level for ab initio and multiple-genome gene-prediction tasks. The fully developed version shows superior performance in 10 out of 12 evaluation criteria compared with the other participating gene finders, including Fgenesh++ and Augustus. An in-depth analysis of mGene's genome-wide predictions revealed that approximately 2200 predicted genes were not contained in the current genome annotation. Testing a subset of 57 of these genes by RT-PCR and sequencing, we confirmed expression for 24 (42%) of them. mGene missed 300 annotated genes, out of which 205 were unconfirmed. RT-PCR testing of 24 of these genes resulted in a success rate of merely 8%. These findings suggest that even the gene catalog of a well-studied organism such as C. elegans can be substantially improved by mGene's predictions. We also provide gene predictions for the four nematodes C. briggsae, C. brenneri, C. japonica, and C. remanei. Comparing the resulting proteomes among these organisms and to the known protein universe, we identified many species-specific gene inventions. In a quality assessment of several available annotations for these genomes, we find that mGene's predictions are most accurate.

ei

DOI [BibTex]

DOI [BibTex]


no image
Efficient Bregman Range Search

Cayton, L.

In Advances in Neural Information Processing Systems 22, pages: 243-251, (Editors: Bengio, Y. , D. Schuurmans, J. Lafferty, C. Williams, A. Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
We develop an algorithm for efficient range search when the notion of dissimilarity is given by a Bregman divergence. The range search task is to return all points in a potentially large database that are within some specified distance of a query. It arises in many learning algorithms such as locally-weighted regression, kernel density estimation, neighborhood graph-based algorithms, and in tasks like outlier detection and information retrieval. In metric spaces, efficient range search-like algorithms based on spatial data structures have been deployed on a variety of statistical tasks. Here we describe an algorithm for range search for an arbitrary Bregman divergence. This broad class of dissimilarity measures includes the relative entropy, Mahalanobis distance, Itakura-Saito divergence, and a variety of matrix divergences. Metric methods cannot be directly applied since Bregman divergences do not in general satisfy the triangle inequality. We derive geometric properties of Bregman divergences that yield an efficient algorithm for range search based on a recently proposed space decomposition for Bregman divergences.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Learning with Structured Data: Applications to Computer Vision

Nowozin, S.

Technische Universität Berlin, Germany, 2009 (phdthesis)

ei

PDF [BibTex]

PDF [BibTex]


no image
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases

Djuranovic, S., Hartmann, MD., Habeck, M., Ursinus, A., Zwickl, P., Martin, J., Lupas, AN., Zeth, K.

Molecular Cell, 34(5):580-590, 2009 (article)

Abstract
The proteasome forms the core of the protein quality control system in archaea and eukaryotes and also occurs in one bacterial lineage, the Actinobacteria. Access to its proteolytic compartment is controlled by AAA ATPases, whose N-terminal domains (N domains) are thought to mediate substrate recognition. The N domains of an archaeal proteasomal ATPase, Archaeoglobus fulgidus PAN, and of its actinobacterial homolog, Rhodococcus erythropolis ARC, form hexameric rings, whose subunits consist of an N-terminal coiled coil and a C-terminal OB domain. In ARC-N, the OB domains are duplicated and form separate rings. PAN-N and ARC-N can act as chaperones, preventing the aggregation of heterologous proteins in vitro, and this activity is preserved in various chimeras, even when these include coiled coils and OB domains from unrelated proteins. The structures suggest a molecular mechanism for substrate processing based on concerted radial motions of the coiled coils relative to the OB rings.

ei

DOI [BibTex]

DOI [BibTex]


no image
Discussion of: Brownian Distance Covariance

Gretton, A., Fukumizu, K., Sriperumbudur, B.

The Annals of Applied Statistics, 3(4):1285-1294, 2009 (article)

ei

[BibTex]

[BibTex]


no image
Covariate shift and local learning by distribution matching

Gretton, A., Smola, A., Huang, J., Schmittfull, M., Borgwardt, K., Schölkopf, B.

In Dataset Shift in Machine Learning, pages: 131-160, (Editors: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D.), MIT Press, Cambridge, MA, USA, 2009 (inbook)

Abstract
Given sets of observations of training and test data, we consider the problem of re-weighting the training data such that its distribution more closely matches that of the test data. We achieve this goal by matching covariate distributions between training and test sets in a high dimensional feature space (specifically, a reproducing kernel Hilbert space). This approach does not require distribution estimation. Instead, the sample weights are obtained by a simple quadratic programming procedure. We provide a uniform convergence bound on the distance between the reweighted training feature mean and the test feature mean, a transductive bound on the expected loss of an algorithm trained on the reweighted data, and a connection to single class SVMs. While our method is designed to deal with the case of simple covariate shift (in the sense of Chapter ??), we have also found benefits for sample selection bias on the labels. Our correction procedure yields its greatest and most consistent advantages when the learning algorithm returns a classifier/regressor that is simpler" than the data might suggest.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions

Sriperumbudur, B., Fukumizu, K., Gretton, A., Lanckriet, G., Schölkopf, B.

In Advances in Neural Information Processing Systems 22, pages: 1750-1758, (Editors: Y Bengio and D Schuurmans and J Lafferty and C Williams and A Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
Embeddings of probability measures into reproducing kernel Hilbert spaces have been proposed as a straightforward and practical means of representing and comparing probabilities. In particular, the distance between embeddings (the maximum mean discrepancy, or MMD) has several key advantages over many classical metrics on distributions, namely easy computability, fast convergence and low bias of finite sample estimates. An important requirement of the embedding RKHS is that it be characteristic: in this case, the MMD between two distributions is zero if and only if the distributions coincide. Three new results on the MMD are introduced in the present study. First, it is established that MMD corresponds to the optimal risk of a kernel classifier, thus forming a natural link between the distance between distributions and their ease of classification. An important consequence is that a kernel must be characteristic to guarantee classifiability between distributions in the RKHS. Second, the class of characteristic kernels is broadened to incorporate all strictly positive definite kernels: these include non-translation invariant kernels and kernels on non-compact domains. Third, a generalization of the MMD is proposed for families of kernels, as the supremum over MMDs on a class of kernels (for instance the Gaussian kernels with different bandwidths). This extension is necessary to obtain a single distance measure if a large selection or class of characteristic kernels is potentially appropriate. This generalization is reasonable, given that it corresponds to the problem of learning the kernel by minimizing the risk of the corresponding kernel classifier. The generalized MMD is shown to have consistent finite sample estimates, and its performance is demonstrated on a homogeneity testing example.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Nonlinear directed acyclic structure learning with weakly additive noise models

Tillman, R., Gretton, A., Spirtes, P.

In Advances in Neural Information Processing Systems 22, pages: 1847-1855, (Editors: Bengio, Y. , D. Schuurmans, J. Lafferty, C. Williams, A. Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
The recently proposed emph{additive noise model} has advantages over previous structure learning algorithms, when attempting to recover some true data generating mechanism, since it (i) does not assume linearity or Gaussianity and (ii) can recover a unique DAG rather than an equivalence class. However, its original extension to the multivariate case required enumerating all possible DAGs, and for some special distributions, e.g. linear Gaussian, the model is invertible and thus cannot be used for structure learning. We present a new approach which combines a PC style search using recent advances in kernel measures of conditional dependence with local searches for additive noise models in substructures of the equivalence class. This results in a more computationally efficient approach that is useful for arbitrary distributions even when additive noise models are invertible. Experiments with synthetic and real data show that this method is more accurate than previous methods when data are nonlinear and/or non-Gaussian.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
From Differential Equations to Differential Geometry: Aspects of Regularisation in Machine Learning

Steinke, F.

Universität des Saarlandes, Saarbrücken, Germany, 2009 (phdthesis)

ei

PDF [BibTex]


no image
Graphical models for decoding in BCI visual speller systems

Martens, S., Farquhar, J., Hill, J., Schölkopf, B.

In pages: 470-473, IEEE, 4th International IEEE EMBS Conference on Neural Engineering (NER), 2009 (inproceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
A Fast, Consistent Kernel Two-Sample Test

Gretton, A., Fukumizu, K., Harchaoui, Z., Sriperumbudur, B.

In Advances in Neural Information Processing Systems 22, pages: 673-681, (Editors: Bengio, Y. , D. Schuurmans, J. Lafferty, C. Williams, A. Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
A kernel embedding of probability distributions into reproducing kernel Hilbert spaces (RKHS) has recently been proposed, which allows the comparison of two probability measures P and Q based on the distance between their respective embeddings: for a sufficiently rich RKHS, this distance is zero if and only if P and Q coincide. In using this distance as a statistic for a test of whether two samples are from different distributions, a major difficulty arises in computing the significance threshold, since the empirical statistic has as its null distribution (where P = Q) an infinite weighted sum of x2 random variables. Prior finite sample approximations to the null distribution include using bootstrap resampling, which yields a consistent estimate but is computationally costly; and fitting a parametric model with the low order moments of the test statistic, which can work well in practice but has no consistency or accuracy guarantees. The main result of the present work is a novel estimate of the null distribution, computed from the eigenspectrum of the Gram matrix on the aggregate sample from P and Q, and having lower computational cost than the bootstrap. A proof of consistency of this estimate is provided. The performance of the null distribution estimate is compared with the bootstrap and parametric approaches on an artificial example, high dimensional multivariate data, and text.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity

Blaschko, M., Shelton, J., Bartels, A.

In Advances in Neural Information Processing Systems 22, pages: 126-134, (Editors: Bengio, Y. , D. Schuurmans, J. Lafferty, C. Williams, A. Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
Resting state activity is brain activation that arises in the absence of any task, and is usually measured in awake subjects during prolonged fMRI scanning sessions where the only instruction given is to close the eyes and do nothing. It has been recognized in recent years that resting state activity is implicated in a wide variety of brain function. While certain networks of brain areas have different levels of activation at rest and during a task, there is nevertheless significant similarity between activations in the two cases. This suggests that recordings of resting state activity can be used as a source of unlabeled data to augment discriminative regression techniques in a semi-supervised setting. We evaluate this setting empirically yielding three main results: (i) regression tends to be improved by the use of Laplacian regularization even when no additional unlabeled data are available, (ii) resting state data seem to have a similar marginal distribution to that recorded during the execution of a visual processing task implying largely similar types of activation, and (iii) this source of information can be broadly exploited to improve the robustness of empirical inference in fMRI studies, an inherently data poor domain.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Non-linear System Identification: Visual Saliency Inferred from Eye-Movement Data

Wichmann, F., Kienzle, W., Schölkopf, B., Franz, M.

Journal of Vision, 9(8):article 32, 2009 (article)

Abstract
For simple visual patterns under the experimenter's control we impose which information, or features, an observer can use to solve a given perceptual task. For natural vision tasks, however, there are typically a multitude of potential features in a given visual scene which the visual system may be exploiting when analyzing it: edges, corners, contours, etc. Here we describe a novel non-linear system identification technique based on modern machine learning methods that allows the critical features an observer uses to be inferred directly from the observer's data. The method neither requires stimuli to be embedded in noise nor is it limited to linear perceptive fields (classification images). We demonstrate our technique by deriving the critical image features observers fixate in natural scenes (bottom-up visual saliency). Unlike previous studies where the relevant structure is determined manually—e.g. by selecting Gabors as visual filters—we do not make any assumptions in this regard, but numerically infer number and properties them from the eye-movement data. We show that center-surround patterns emerge as the optimal solution for predicting saccade targets from local image structure. The resulting model, a one-layer feed-forward network with contrast gain-control, is surprisingly simple compared to previously suggested saliency models. Nevertheless, our model is equally predictive. Furthermore, our findings are consistent with neurophysiological hardware in the superior colliculus. Bottom-up visual saliency may thus not be computed cortically as has been thought previously.

ei

Web DOI [BibTex]


no image
mGene.web: a web service for accurate computational gene finding

Schweikert, G., Behr, J., Zien, A., Zeller, G., Ong, C., Sonnenburg, S., Rätsch, G.

Nucleic Acids Research, 37, pages: W312-6, 2009 (article)

Abstract
We describe mGene.web, a web service for the genome-wide prediction of protein coding genes from eukaryotic DNA sequences. It offers pre-trained models for the recognition of gene structures including untranslated regions in an increasing number of organisms. With mGene.web, users have the additional possibility to train the system with their own data for other organisms on the push of a button, a functionality that will greatly accelerate the annotation of newly sequenced genomes. The system is built in a highly modular way, such that individual components of the framework, like the promoter prediction tool or the splice site predictor, can be used autonomously. The underlying gene finding system mGene is based on discriminative machine learning techniques and its high accuracy has been demonstrated in an international competition on nematode genomes. mGene.web is available at http://www.mgene.org/web, it is free of charge and can be used for eukaryotic genomes of small to moderate size (several hundred Mbp).

ei

DOI [BibTex]

DOI [BibTex]


no image
Fast subtree kernels on graphs

Shervashidze, N., Borgwardt, K.

In Advances in Neural Information Processing Systems 22, pages: 1660-1668, (Editors: Bengio, Y. , D. Schuurmans, J. Lafferty, C. Williams, A. Culotta), Curran, Red Hook, NY, USA, 23rd Annual Conference on Neural Information Processing Systems (NIPS), 2009 (inproceedings)

Abstract
In this article, we propose fast subtree kernels on graphs. On graphs with n nodes and m edges and maximum degree d, these kernels comparing subtrees of height h can be computed in O(mh), whereas the classic subtree kernel by Ramon & G{\"a}rtner scales as O(n24dh). Key to this efficiency is the observation that the Weisfeiler-Lehman test of isomorphism from graph theory elegantly computes a subtree kernel as a byproduct. Our fast subtree kernels can deal with labeled graphs, scale up easily to large graphs and outperform state-of-the-art graph kernels on several classification benchmark datasets in terms of accuracy and runtime.

ei

PDF Web [BibTex]

PDF Web [BibTex]

2003


no image
Support Vector Channel Selection in BCI

Lal, T., Schröder, M., Hinterberger, T., Weston, J., Bogdan, M., Birbaumer, N., Schölkopf, B.

(120), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, December 2003 (techreport)

Abstract
Designing a Brain Computer Interface (BCI) system one can choose from a variety of features that may be useful for classifying brain activity during a mental task. For the special case of classifying EEG signals we propose the usage of the state of the art feature selection algorithms Recursive Feature Elimination [3] and Zero-Norm Optimization [13] which are based on the training of Support Vector Machines (SVM) [11]. These algorithms can provide more accurate solutions than standard filter methods for feature selection [14]. We adapt the methods for the purpose of selecting EEG channels. For a motor imagery paradigm we show that the number of used channels can be reduced significantly without increasing the classification error. The resulting best channels agree well with the expected underlying cortical activity patterns during the mental tasks. Furthermore we show how time dependent task specific information can be visualized.

ei

PDF Web [BibTex]

2003


PDF Web [BibTex]


no image
Texture and haptic cues in slant discrimination: Measuring the effect of texture type on cue combination

Rosas, P., Wichmann, F., Ernst, M., Wagemans, J.

Journal of Vision, 3(12):26, 2003 Fall Vision Meeting of the Optical Society of America, December 2003 (poster)

Abstract
In a number of models of depth cue combination the depth percept is constructed via a weighted average combination of independent depth estimations. The influence of each cue in such average depends on the reliability of the source of information. (Young, Landy, & Maloney, 1993; Ernst & Banks, 2002.) In particular, Ernst & Banks (2002) formulate the combination performed by the human brain as that of the minimum variance unbiased estimator that can be constructed from the available cues. Using slant discrimination and slant judgment via probe adjustment as tasks, we have observed systematic differences in performance of human observers when a number of different types of textures were used as cue to slant (Rosas, Wichmann & Wagemans, 2003). If the depth percept behaves as described above, our measurements of the slopes of the psychometric functions provide the predicted weights for the texture cue for the ranked texture types. We have combined these texture types with object motion but the obtained results are difficult to reconcile with the unbiased minimum variance estimator model (Rosas & Wagemans, 2003). This apparent failure of such model might be explained by the existence of a coupling of texture and motion, violating the assumption of independence of cues. Hillis, Ernst, Banks, & Landy (2002) have shown that while for between-modality combination the human visual system has access to the single-cue information, for within-modality combination (visual cues: disparity and texture) the single-cue information is lost, suggesting a coupling between these cues. Then, in the present study we combine the different texture types with haptic information in a slant discrimination task, to test whether in the between-modality condition the texture cue and the haptic cue to slant are combined as predicted by an unbiased, minimum variance estimator model.

ei

Web DOI [BibTex]

Web DOI [BibTex]


no image
Concentration Inequalities for Sub-Additive Functions Using the Entropy Method

Bousquet, O.

Stochastic Inequalities and Applications, 56, pages: 213-247, Progress in Probability, (Editors: Giné, E., C. Houdré and D. Nualart), November 2003 (article)

Abstract
We obtain exponential concentration inequalities for sub-additive functions of independent random variables under weak conditions on the increments of those functions, like the existence of exponential moments for these increments. As a consequence of these general inequalities, we obtain refinements of Talagrand's inequality for empirical processes and new bounds for randomized empirical processes. These results are obtained by further developing the entropy method introduced by Ledoux.

ei

PostScript [BibTex]

PostScript [BibTex]


no image
Learning Theory and Kernel Machines: 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), LNCS Vol. 2777

Schölkopf, B., Warmuth, M.

Proceedings of the 16th Annual Conference on Learning Theory and 7th Kernel Workshop (COLT/Kernel 2003), COLT/Kernel 2003, pages: 746, Springer, Berlin, Germany, 16th Annual Conference on Learning Theory and 7th Kernel Workshop, November 2003, Lecture Notes in Computer Science ; 2777 (proceedings)

ei

DOI [BibTex]

DOI [BibTex]


no image
On the Complexity of Learning the Kernel Matrix

Bousquet, O., Herrmann, D.

In Advances in Neural Information Processing Systems 15, pages: 399-406, (Editors: Becker, S. , S. Thrun, K. Obermayer), The MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We investigate data based procedures for selecting the kernel when learning with Support Vector Machines. We provide generalization error bounds by estimating the Rademacher complexities of the corresponding function classes. In particular we obtain a complexity bound for function classes induced by kernels with given eigenvectors, i.e., we allow to vary the spectrum and keep the eigenvectors fix. This bound is only a logarithmic factor bigger than the complexity of the function class induced by a single kernel. However, optimizing the margin over such classes leads to overfitting. We thus propose a suitable way of constraining the class. We use an efficient algorithm to solve the resulting optimization problem, present preliminary experimental results, and compare them to an alignment-based approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Image Reconstruction by Linear Programming

Tsuda, K., Rätsch, G.

(118), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, October 2003 (techreport)

ei

PDF [BibTex]

PDF [BibTex]


no image
Cluster Kernels for Semi-Supervised Learning

Chapelle, O., Weston, J., Schölkopf, B.

In Advances in Neural Information Processing Systems 15, pages: 585-592, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We propose a framework to incorporate unlabeled data in kernel classifier, based on the idea that two points in the same cluster are more likely to have the same label. This is achieved by modifying the eigenspectrum of the kernel matrix. Experimental results assess the validity of this approach.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Mismatch String Kernels for SVM Protein Classification

Leslie, C., Eskin, E., Weston, J., Noble, W.

In Advances in Neural Information Processing Systems 15, pages: 1417-1424, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
We introduce a class of string kernels, called mismatch kernels, for use with support vector machines (SVMs) in a discriminative approach to the protein classification problem. These kernels measure sequence similarity based on shared occurrences of k-length subsequences, counted with up to m mismatches, and do not rely on any generative model for the positive training sequences. We compute the kernels efficiently using a mismatch tree data structure and report experiments on a benchmark SCOP dataset, where we show that the mismatch kernel used with an SVM classifier performs as well as the Fisher kernel, the most successful method for remote homology detection, while achieving considerable computational savings.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Real-Time Face Detection

Kienzle, W.

Biologische Kybernetik, Eberhard-Karls-Universitaet Tuebingen, Tuebingen, Germany, October 2003 (diplomathesis)

ei

[BibTex]

[BibTex]


no image
Kernel Dependency Estimation

Weston, J., Chapelle, O., Elisseeff, A., Schölkopf, B., Vapnik, V.

In Advances in Neural Information Processing Systems 15, pages: 873-880, (Editors: S Becker and S Thrun and K Obermayer), MIT Press, Cambridge, MA, USA, 16th Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Linear Combinations of Optic Flow Vectors for Estimating Self-Motion: a Real-World Test of a Neural Model

Franz, MO., Chahl, JS.

In Advances in Neural Information Processing Systems 15, pages: 1319-1326, (Editors: Becker, S., S. Thrun and K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
The tangential neurons in the fly brain are sensitive to the typical optic flow patterns generated during self-motion. In this study, we examine whether a simplified linear model of these neurons can be used to estimate self-motion from the optic flow. We present a theory for the construction of an estimator consisting of a linear combination of optic flow vectors that incorporates prior knowledge both about the distance distribution of the environment, and about the noise and self-motion statistics of the sensor. The estimator is tested on a gantry carrying an omnidirectional vision sensor. The experiments show that the proposed approach leads to accurate and robust estimates of rotation rates, whereas translation estimates turn out to be less reliable.

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Clustering with the Fisher score

Tsuda, K., Kawanabe, M., Müller, K.

In Advances in Neural Information Processing Systems 15, pages: 729-736, (Editors: Becker, S. , S. Thrun, K. Obermayer), MIT Press, Cambridge, MA, USA, Sixteenth Annual Conference on Neural Information Processing Systems (NIPS), October 2003 (inproceedings)

Abstract
Recently the Fisher score (or the Fisher kernel) is increasingly used as a feature extractor for classification problems. The Fisher score is a vector of parameter derivatives of loglikelihood of a probabilistic model. This paper gives a theoretical analysis about how class information is preserved in the space of the Fisher score, which turns out that the Fisher score consists of a few important dimensions with class information and many nuisance dimensions. When we perform clustering with the Fisher score, K-Means type methods are obviously inappropriate because they make use of all dimensions. So we will develop a novel but simple clustering algorithm specialized for the Fisher score, which can exploit important dimensions. This algorithm is successfully tested in experiments with artificial data and real data (amino acid sequences).

ei

PDF Web [BibTex]

PDF Web [BibTex]


no image
Marginalized Kernels between Labeled Graphs

Kashima, H., Tsuda, K., Inokuchi, A.

In 20th International Conference on Machine Learning, pages: 321-328, (Editors: Faucett, T. and N. Mishra), 20th International Conference on Machine Learning, August 2003 (inproceedings)

ei

PDF [BibTex]

PDF [BibTex]


no image
Sparse Gaussian Processes: inference, subspace identification and model selection

Csato, L., Opper, M.

In Proceedings, pages: 1-6, (Editors: Van der Hof, , Wahlberg), The Netherlands, 13th IFAC Symposium on System Identifiaction, August 2003, electronical version; Index ThA02-2 (inproceedings)

Abstract
Gaussian Process (GP) inference is a probabilistic kernel method where the GP is treated as a latent function. The inference is carried out using the Bayesian online learning and its extension to the more general iterative approach which we call TAP/EP learning. Sparsity is introduced in this context to make the TAP/EP method applicable to large datasets. We address the prohibitive scaling of the number of parameters by defining a subset of the training data that is used as the support the GP, thus the number of required parameters is independent of the training set, similar to the case of ``Support--‘‘ or ``Relevance--Vectors‘‘. An advantage of the full probabilistic treatment is that allows the computation of the marginal data likelihood or evidence, leading to hyper-parameter estimation within the GP inference. An EM algorithm to choose the hyper-parameters is proposed. The TAP/EP learning is the E-step and the M-step then updates the hyper-parameters. Due to the sparse E-step the resulting algorithm does not involve manipulation of large matrices. The presented algorithm is applicable to a wide variety of likelihood functions. We present results of applying the algorithm on classification and nonstandard regression problems for artificial and real datasets.

ei

PDF GZIP [BibTex]

PDF GZIP [BibTex]


no image
Adaptive, Cautious, Predictive control with Gaussian Process Priors

Murray-Smith, R., Sbarbaro, D., Rasmussen, CE., Girard, A.

In Proceedings of the 13th IFAC Symposium on System Identification, pages: 1195-1200, (Editors: Van den Hof, P., B. Wahlberg and S. Weiland), Proceedings of the 13th IFAC Symposium on System Identification, August 2003 (inproceedings)

Abstract
Nonparametric Gaussian Process models, a Bayesian statistics approach, are used to implement a nonlinear adaptive control law. Predictions, including propagation of the state uncertainty are made over a k-step horizon. The expected value of a quadratic cost function is minimised, over this prediction horizon, without ignoring the variance of the model predictions. The general method and its main features are illustrated on a simulation example.

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
Remarks on Statistical Learning Theory

Bousquet, O.

Machine Learning Summer School, August 2003 (talk)

ei

PDF [BibTex]

PDF [BibTex]


no image
On the Representation, Learning and Transfer of Spatio-Temporal Movement Characteristics

Ilg, W., Bakir, GH., Mezger, J., Giese, MA.

In Humanoids Proceedings, pages: 0-0, Humanoids Proceedings, July 2003, electronical version (inproceedings)

Abstract
In this paper we present a learning-based approach for the modelling of complex movement sequences. Based on the method of Spatio-Temporal Morphable Models (STMMS. We derive a hierarchical algorithm that, in a first step, identifies automatically movement elements in movement sequences based on a coarse spatio-temporal description, and in a second step models these movement primitives by approximation through linear combinations of learned example movement trajectories. We describe the different steps of the algorithm and show how it can be applied for modelling and synthesis of complex sequences of human movements that contain movement elements with variable style. The proposed method is demonstrated on different applications of movement representation relevant for imitation learning of movement styles in humanoid robotics.

ei

PDF [BibTex]

PDF [BibTex]


no image
Statistical Learning Theory, Capacity and Complexity

Schölkopf, B.

Complexity, 8(4):87-94, July 2003 (article)

Abstract
We give an exposition of the ideas of statistical learning theory, followed by a discussion of how a reinterpretation of the insights of learning theory could potentially also benefit our understanding of a certain notion of complexity.

ei

Web DOI [BibTex]


no image
Ranking on Data Manifolds

Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.

(113), Max Planck Institute for Biological Cybernetics, 72076 Tuebingen, Germany, June 2003 (techreport)

Abstract
The Google search engine has had a huge success with its PageRank web page ranking algorithm, which exploits global, rather than local, hyperlink structure of the World Wide Web using random walk. This algorithm can only be used for graph data, however. Here we propose a simple universal ranking algorithm for vectorial data, based on the exploration of the intrinsic global geometric structure revealed by a huge amount of data. Experimental results from image and text to bioinformatics illustrates the validity of our algorithm.

ei

PDF [BibTex]

PDF [BibTex]


no image
Kernel Hebbian Algorithm for Iterative Kernel Principal Component Analysis

Kim, K., Franz, M., Schölkopf, B.

(109), MPI f. biologische Kybernetik, Tuebingen, June 2003 (techreport)

Abstract
A new method for performing a kernel principal component analysis is proposed. By kernelizing the generalized Hebbian algorithm, one can iteratively estimate the principal components in a reproducing kernel Hilbert space with only linear order memory complexity. The derivation of the method, a convergence proof, and preliminary applications in image hyperresolution are presented. In addition, we discuss the extension of the method to the online learning of kernel principal components.

ei

PDF [BibTex]

PDF [BibTex]


no image
Learning with Local and Global Consistency

Zhou, D., Bousquet, O., Lal, T., Weston, J., Schölkopf, B.

(112), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany, June 2003 (techreport)

Abstract
We consider the learning problem in the transductive setting. Given a set of points of which only some are labeled, the goal is to predict the label of the unlabeled points. A principled clue to solve such a learning problem is the consistency assumption that a classifying function should be sufficiently smooth with respect to the structure revealed by these known labeled and unlabeled points. We present a simple algorithm to obtain such a smooth solution. Our method yields encouraging experimental results on a number of classification problems and demonstrates effective use of unlabeled data.

ei

[BibTex]

[BibTex]


no image
Dealing with large Diagonals in Kernel Matrices

Weston, J., Schölkopf, B., Eskin, E., Leslie, C., Noble, W.

Annals of the Institute of Statistical Mathematics, 55(2):391-408, June 2003 (article)

Abstract
In kernel methods, all the information about the training data is contained in the Gram matrix. If this matrix has large diagonal values, which arises for many types of kernels, then kernel methods do not perform well: We propose and test several methods for dealing with this problem by reducing the dynamic range of the matrix while preserving the positive definiteness of the Hessian of the quadratic programming problem that one has to solve when training a Support Vector Machine, which is a common kernel approach for pattern recognition.

ei

PDF DOI [BibTex]

PDF DOI [BibTex]


no image
Implicit Wiener Series

Franz, M., Schölkopf, B.

(114), Max Planck Institute for Biological Cybernetics, June 2003 (techreport)

Abstract
The Wiener series is one of the standard methods to systematically characterize the nonlinearity of a neural system. The classical estimation method of the expansion coefficients via cross-correlation suffers from severe problems that prevent its application to high-dimensional and strongly nonlinear systems. We propose a new estimation method based on regression in a reproducing kernel Hilbert space that overcomes these problems. Numerical experiments show performance advantages in terms of convergence, interpretability and system size that can be handled.

ei

PDF [BibTex]

PDF [BibTex]


no image
Machine Learning approaches to protein ranking: discriminative, semi-supervised, scalable algorithms

Weston, J., Leslie, C., Elisseeff, A., Noble, W.

(111), Max Planck Institute for Biological Cybernetics, Tübingen, Germany, June 2003 (techreport)

Abstract
A key tool in protein function discovery is the ability to rank databases of proteins given a query amino acid sequence. The most successful method so far is a web-based tool called PSI-BLAST which uses heuristic alignment of a profile built using the large unlabeled database. It has been shown that such use of global information via an unlabeled data improves over a local measure derived from a basic pairwise alignment such as performed by PSI-BLAST's predecessor, BLAST. In this article we look at ways of leveraging techniques from the field of machine learning for the problem of ranking. We show how clustering and semi-supervised learning techniques, which aim to capture global structure in data, can significantly improve over PSI-BLAST.

ei

PDF [BibTex]

PDF [BibTex]


no image
The em Algorithm for Kernel Matrix Completion with Auxiliary Data

Tsuda, K., Akaho, S., Asai, K.

Journal of Machine Learning Research, 4, pages: 67-81, May 2003 (article)

ei

PDF [BibTex]

PDF [BibTex]


no image
Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces

Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A., Müller, K.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):623-628, May 2003 (article)

Abstract
We incorporate prior knowledge to construct nonlinear algorithms for invariant feature extraction and discrimination. Employing a unified framework in terms of a nonlinearized variant of the Rayleigh coefficient, we propose nonlinear generalizations of Fisher‘s discriminant and oriented PCA using support vector kernel functions. Extensive simulations show the utility of our approach.

ei

DOI [BibTex]

DOI [BibTex]