ei
Ihler, A. T., Janzing, D.
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI)
pages: 869, AUAI Press, June 2016 (proceedings)
ei
Gong, M., Zhang, K., Liu, T., Tao, D., Glymour, C., Schölkopf, B.
Domain Adaptation with Conditional Transferable Components
Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2839-2848, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M.-F. and Weinberger, K. Q.), June 2016 (conference)
ei
Etesami, S., Kiyavash, N., Zhang, K., Singhal, K.
Learning Causal Interaction Network of Multivariate Hawkes Processes
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), June 2016, poster presentation (conference)
ei
Wieschollek, P., Wang, O., Sorkine-Hornung, A., Lensch, H. P. A.
Efficient Large-scale Approximate Nearest Neighbor Search on the GPU
29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2027 - 2035, IEEE, June 2016 (conference)
ei
Zhang, K., Zhang, J., Huang, B., Schölkopf, B., Glymour, C.
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 825-834, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)
ei
pn
Kersting, H., Hennig, P.
Active Uncertainty Calibration in Bayesian ODE Solvers
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 309-318, (Editors: Ihler, A. and Janzing, D.), AUAI Press, June 2016 (conference)
ei
Bauer, S., Schölkopf, B., Peters, J.
The Arrow of Time in Multivariate Time Serie
Proceedings of the 33rd International Conference on Machine Learning (ICML), 48, pages: 2043-2051, JMLR Workshop and Conference Proceedings, (Editors: Balcan, M. F. and Weinberger, K. Q.), JMLR, June 2016 (conference)
ei
Rubenstein, P. K., Chwialkowski, K. P., Gretton, A.
A Kernel Test for Three-Variable Interactions with Random Processes
Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence (UAI), (Editors: Ihler, Alexander T. and Janzing, Dominik), June 2016 (conference)
ei
Gu, S., Lillicrap, T., Sutskever, I., Levine, S.
Continuous Deep Q-Learning with Model-based Acceleration
Proceedings of the 33nd International Conference on Machine Learning (ICML), 48, pages: 2829-2838, JMLR Workshop and Conference Proceedings, (Editors: Maria-Florina Balcan and Kilian Q. Weinberger), JMLR.org, June 2016 (conference)
ei
Leibfried, F, Braun, D
Bounded Rational Decision-Making in Feedforward Neural Networks
Proceedings of the 32nd Conference on Uncertainty in Artificial Intelligence (UAI), pages: 407-416, June 2016 (conference)
ei
pn
González, J., Dai, Z., Hennig, P., Lawrence, N.
Batch Bayesian Optimization via Local Penalization
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 648-657, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C.), May 2016 (conference)
ei
Gu, S., Levine, S., Sutskever, I., Mnih, A.
MuProp: Unbiased Backpropagation for Stochastic Neural Networks
4th International Conference on Learning Representations (ICLR), May 2016 (conference)
ei
Hohmann, M. R., Fomina, T., Jayaram, V., Förster, C., Just, J., M., S., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.
An Improved Cognitive Brain-Computer Interface for Patients with Amyotrophic Lateral Sclerosis
Proceedings of the Sixth International BCI Meeting, pages: 44, (Editors: Müller-Putz, G. R. and Huggins, J. E. and Steyrl, D.), BCI, May 2016 (conference)
ei
Loktyushin, A., Ehses, P., Schölkopf, B., Scheffler, K.
Autofocusing-based correction of B0 fluctuation-induced ghosting
24th Annual Meeting and Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM), May 2016 (poster)
ei
Ewerton, M., Maeda, G., Neumann, G., Kisner, V., Kollegger, G., Wiemeyer, J., Peters, J.
Movement Primitives with Multiple Phase Parameters
IEEE International Conference on Robotics and Automation (ICRA), pages: 201-206, IEEE, May 2016 (conference)
ei
Babbar, R., Muandet, K., Schölkopf, B.
TerseSVM : A Scalable Approach for Learning Compact Models in Large-scale Classification
Proceedings of the 2016 SIAM International Conference on Data Mining (SDM), pages: 234-242, (Editors: Sanjay Chawla Venkatasubramanian and Wagner Meira), May 2016 (conference)
am
ei
Büchler, D., Ott, H., Peters, J.
A Lightweight Robotic Arm with Pneumatic Muscles for Robot Learning
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages: 4086-4092, IEEE, IEEE International Conference on Robotics and Automation, May 2016 (conference)
ei
pn
Bartels, S., Hennig, P.
Probabilistic Approximate Least-Squares
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics (AISTATS), 51, pages: 676-684, JMLR Workshop and Conference Proceedings, (Editors: Gretton, A. and Robert, C. C. ), May 2016 (conference)
ei
Jayaram, V., Grosse-Wentrup, M.
A Transfer Learning Approach for Adaptive Classification in P300 Paradigms
Sixth International BCI Meeting (BCI), May 2016 (conference)
ei
Modugno, V., Neumann, G., Rueckert, E., Oriolo, G., Peters, J., Ivaldi, S.
Learning soft task priorities for control of redundant robots
IEEE International Conference on Robotics and Automation (ICRA), pages: 221-226, IEEE, May 2016 (conference)
ei
Tabibian, B., Farajtabar, M., Valera, I., Song, L., Schölkopf, B., Gomez Rodriguez, M.
On the Reliability of Information and Trustworthiness of Web Sources in Wikipedia
Wikipedia workshop at the 10th International AAAI Conference on Web and Social Media (ICWSM), May 2016 (conference)
ei
Sajjadi, M. S. M., Alamgir, M., von Luxburg, U.
Peer Grading in a Course on Algorithms and Data Structures: Machine Learning Algorithms do not Improve over Simple Baselines
Proceedings of the 3rd ACM conference on Learning @ Scale, pages: 369-378, (Editors: Haywood, J. and Aleven, V. and Kay, J. and Roll, I.), ACM, L@S, April 2016, (An earlier version of this paper had been presented at the ICML 2015 workshop for Machine Learning for Education.) (conference)
ev
zur Jacobsmühlen, J., Achterhold, J., Kleszczynski, S., Witt, G., Merhof, D.
Robust calibration marker detection in powder bed images from laser beam melting processes
In 2016 IEEE International Conference on Industrial Technology (ICIT), pages: 910-915, March 2016 (inproceedings)
ei
Zhang, K., Wang, Z., Zhang, J., Schölkopf, B.
On estimation of functional causal models: General results and application to post-nonlinear causal model
ACM Transactions on Intelligent Systems and Technologies, 7(2):article no. 13, January 2016 (article)
ei
Borgström, J., Gordon, A. D., Ouyang, L., Russo, C., Ścibior, A., Szymczak, M.
Fabular: Regression Formulas As Probabilistic Programming
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages: 271-283, POPL ’16, ACM, January 2016 (conference)
ei
Zhang, K., Li, J., Bareinboim, E., Schölkopf, B., Pearl, J.
Special Issue on Causal Discovery and Inference
ACM Transactions on Intelligent Systems and Technology (TIST), 7(2), January 2016, (Guest Editors) (misc)
ei
pn
Klenske, E. D., Zeilinger, M., Schölkopf, B., Hennig, P.
Gaussian Process-Based Predictive Control for Periodic Error Correction
IEEE Transactions on Control Systems Technology , 24(1):110-121, 2016 (article)
ei
Empirical Inference (2010-2015)
Scientific Advisory Board Report, 2016 (misc)
ei
Townsend, J., Koep, N., Weichwald, S.
Pymanopt: A Python Toolbox for Optimization on Manifolds using Automatic Differentiation
Journal of Machine Learning Research, 17(137):1-5, 2016 (article)
ei
Wang, D., Hogg, D. W., Foreman-Mackey, D., Schölkopf, B.
A Causal, Data-driven Approach to Modeling the Kepler Data
Publications of the Astronomical Society of the Pacific, 128(967):094503, 2016 (article)
am
ei
Daniel, C., van Hoof, H., Peters, J., Neumann, G.
Probabilistic Inference for Determining Options in Reinforcement Learning
Machine Learning, Special Issue, 104(2):337-357, (Editors: Gärtner, T., Nanni, M., Passerini, A. and Robardet, C.), European Conference on Machine Learning im Machine Learning, Journal Track, 2016, Best Student Paper Award of ECML-PKDD 2016 (article)
ei
Katiyar, P., Castaneda, S., Patzwaldt, K., Russo, F., Poli, S., Ziemann, U., Disselhorst, J. A., Pichler, B. J.
Novel Random Forest based framework enables the segmentation of cerebral ischemic regions using multiparametric MRI
European Molecular Imaging Meeting, 2016 (poster)
ei
Logothetis, N. K., Murayama, Y., Ramirez-Villegas, J. F., Besserve, M., Evrard, H.
PGO wave-triggered functional MRI: mapping the networks underlying synaptic consolidation
47th Annual Meeting of the Society for Neuroscience (Neuroscience), 2016 (poster)
ei
Mittal, A., Raj, A., Namboodiri, V. P., Tuytelaars, T.
Unsupervised Domain Adaptation in the Wild : Dealing with Asymmetric Label Set
2016 (misc)
ei
Rothkegel, L. O. M., Trukenbrod, H. A., Schütt, H. H., Wichmann, F. A., Engbert, R.
Influence of initial fixation position in scene viewing
Vision Research, 129, pages: 33-49, 2016 (article)
ei
Wallis, T. S. A., Bethge, M., Wichmann, F. A.
Testing models of peripheral encoding using metamerism in an oddity paradigm
Journal of Vision, 16(2), 2016 (article)
ei
Schölkopf, B., Hogg, D., Wang, D., Foreman-Mackey, D., Janzing, D., Simon-Gabriel, C. J., Peters, J.
Modeling Confounding by Half-Sibling Regression
Proceedings of the National Academy of Science, 113(27):7391-7398, 2016 (article)
ei
pn
Klenske, E. D., Hennig, P.
Dual Control for Approximate Bayesian Reinforcement Learning
Journal of Machine Learning Research, 17(127):1-30, 2016 (article)
ei
Divine, M. R., Katiyar, P., Kohlhofer, U., Quintanilla-Martinez, L., Disselhorst, J. A., Pichler, B. J.
A Population Based Gaussian Mixture Model Incorporating 18F-FDG-PET and DW-MRI Quantifies Tumor Tissue Classes
Journal of Nuclear Medicine, 57(3):473-479, 2016 (article)
ei
Zhang, K., Hyvärinen, A.
Nonlinear functional causal models for distinguishing cause from effect
In Statistics and Causality: Methods for Applied Empirical Research, pages: 185-201, 8, 1st, (Editors: Wolfgang Wiedermann and Alexander von Eye), John Wiley & Sons, Inc., 2016 (inbook)
ei
Seith, F., Gatidis, S., Schmidt, H., Bezrukov, I., la Fougère, C., Nikolaou, K., Pfannenberg, C., Schwenzer, N.
Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance–and Computed Tomography–Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients
Investigative Radiology, 51(1):66-71, 2016 (article)
ei
Gomez Rodriguez, M., Song, L., Daneshmand, H., Schölkopf, B.
Estimating Diffusion Networks: Recovery Conditions, Sample Complexity and Soft-thresholding Algorithm
Journal of Machine Learning Research, 17(90):1-29, 2016 (article)
ei
Castaneda, S., Katiyar, P., Russo, F., Calaminus, C., Disselhorst, J. A., Ziemann, U., Kohlhofer, U., Quintanilla-Martinez, L., Poli, S., Pichler, B. J.
Analysis of multiparametric MRI using a semi-supervised random forest framework allows the detection of therapy response in ischemic stroke
World Molecular Imaging Conference, 2016 (talk)
ei
Schütt, H. H., Harmeling, S., Macke, J. H., Wichmann, F. A.
Painfree and accurate Bayesian estimation of psychometric functions for (potentially) overdispersed data
Vision Research, 122, pages: 105-123, 2016 (article)
ei
Grosse-Wentrup, M., Janzing, D., Siegel, M., Schölkopf, B.
Identification of causal relations in neuroimaging data with latent confounders: An instrumental variable approach
NeuroImage, 125, pages: 825-833, 2016 (article)
ei
Köhler, R.
Advances in computational imaging: Benchmarking Deblurring Algorithms, Deep Neural Inpainting, Depth Estimation from Light Fields
Eberhard Karls Universität Tübingen, Germany, 2016 (phdthesis)
ei
Hohmann, M., Fomina, T., Jayaram, V., Widmann, N., Förster, C., Just, J., Synofzik, M., Schölkopf, B., Schöls, L., Grosse-Wentrup, M.
A cognitive brain–computer interface for patients with amyotrophic lateral sclerosis
In Brain-Computer Interfaces: Lab Experiments to Real-World Applications, 228(Supplement C):221-239, 8, Progress in Brain Research, (Editors: Damien Coyle), Elsevier, 2016 (incollection)
ev
Stueckler, J., Schwarz, M., Schadler, M., Topalidou-Kyniazopoulou, A., Behnke, S.
NimbRo Explorer: Semi-Autonomous Exploration and Mobile Manipulation in Rough Terrain
Journal of Field Robotics (JFR), 33(4):411-430, Wiley, 2016 (article)
ei
Daniel, C., Neumann, G., Kroemer, O., Peters, J.
Hierarchical Relative Entropy Policy Search
Journal of Machine Learning Research, 17(93):1-50, 2016 (article)