Header logo is


2018


no image
The Mirage of Action-Dependent Baselines in Reinforcement Learning

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., Levine, S.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 5022-5031, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

PDF link (url) Project Page [BibTex]

2018


PDF link (url) Project Page [BibTex]


no image
Intrinsic disentanglement: an invariance view for deep generative models

Besserve, M., Sun, R., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


Assessing Generative Models via Precision and Recall
Assessing Generative Models via Precision and Recall

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.

Workshop on Theoretical Foundations and Applications of Deep Generative Models (TADGM) at the 35th International Conference on Machine Learning (ICML), July 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


Tempered Adversarial Networks
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4448-4456, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

arXiv link (url) Project Page [BibTex]

arXiv link (url) Project Page [BibTex]


no image
PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

Parmas, P., Rasmussen, C., Peters, J., Doya, K.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4065-4074, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Learning Independent Causal Mechanisms

Parascandolo, G., Kilbertus, N., Rojas-Carulla, M., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 4033-4041, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Nonstationary GANs: Analysis as Nonautonomous Dynamical Systems

Mehrjou, A., Schölkopf, B.

Workshop on Theoretical Foundations and Applications of Deep Generative Models at ICML, July 2018 (conference)

ei

PDF [BibTex]

PDF [BibTex]


no image
Differentially Private Database Release via Kernel Mean Embeddings

Balog, M., Tolstikhin, I., Schölkopf, B.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 423-431, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
On Matching Pursuit and Coordinate Descent

Locatello, F., Raj, A., Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B., Stich, S. U., Jaggi, M.

Proceedings of the 35th International Conference on Machine Learning (ICML), 80, pages: 3204-3213, Proceedings of Machine Learning Research, (Editors: Dy, Jennifer and Krause, Andreas), PMLR, July 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Iterative Model-Fitting and Local Controller Optimization - Towards a Better Understanding of Convergence Properties

Wüthrich, M., Schölkopf, B.

Workshop on Prediction and Generative Modeling in Reinforcement Learning at ICML, July 2018 (conference)

ei

PDF link (url) [BibTex]

PDF link (url) [BibTex]


no image
Counterfactual Mean Embedding: A Kernel Method for Nonparametric Causal Inference

Muandet, K., Kanagawa, M., Saengkyongam, S., Marukata, S.

Workshop on Machine Learning for Causal Inference, Counterfactual Prediction, and Autonomous Action (CausalML) at ICML, July 2018 (conference)

ei

[BibTex]

[BibTex]


Frame-Recurrent Video Super-Resolution
Frame-Recurrent Video Super-Resolution

Sajjadi, M. S. M., Vemulapalli, R., Brown, M.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , June 2018 (conference)

ei

ArXiv link (url) [BibTex]

ArXiv link (url) [BibTex]


no image
Learning Face Deblurring Fast and Wide

Jin, M., Hirsch, M., Favaro, P.

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pages: 745-753, June 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Wasserstein Auto-Encoders

Tolstikhin, I., Bousquet, O., Gelly, S., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Fidelity-Weighted Learning

Dehghani, M., Mehrjou, A., Gouws, S., Kamps, J., Schölkopf, B.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Inducing Probabilistic Context-Free Grammars for the Sequencing of Movement Primitives

Lioutikov, R., Maeda, G., Veiga, F., Kersting, K., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 1-8, IEEE, May 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Sobolev GAN

Mroueh, Y., Li*, C., Sercu*, T., Raj*, A., Cheng, Y.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Temporal Difference Models: Model-Free Deep RL for Model-Based Control

Pong*, V., Gu*, S., Dalal, M., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018, *equal contribution (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Robust Dense Mapping for Large-Scale Dynamic Environments
Robust Dense Mapping for Large-Scale Dynamic Environments

Barsan, I. A., Liu, P., Pollefeys, M., Geiger, A.

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) 2018, IEEE, International Conference on Robotics and Automation, May 2018 (inproceedings)

Abstract
We present a stereo-based dense mapping algorithm for large-scale dynamic urban environments. In contrast to other existing methods, we simultaneously reconstruct the static background, the moving objects, and the potentially moving but currently stationary objects separately, which is desirable for high-level mobile robotic tasks such as path planning in crowded environments. We use both instance-aware semantic segmentation and sparse scene flow to classify objects as either background, moving, or potentially moving, thereby ensuring that the system is able to model objects with the potential to transition from static to dynamic, such as parked cars. Given camera poses estimated from visual odometry, both the background and the (potentially) moving objects are reconstructed separately by fusing the depth maps computed from the stereo input. In addition to visual odometry, sparse scene flow is also used to estimate the 3D motions of the detected moving objects, in order to reconstruct them accurately. A map pruning technique is further developed to improve reconstruction accuracy and reduce memory consumption, leading to increased scalability. We evaluate our system thoroughly on the well-known KITTI dataset. Our system is capable of running on a PC at approximately 2.5Hz, with the primary bottleneck being the instance-aware semantic segmentation, which is a limitation we hope to address in future work.

avg

pdf Video Project Page Project Page [BibTex]

pdf Video Project Page Project Page [BibTex]


no image
Wasserstein Auto-Encoders: Latent Dimensionality and Random Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning

Eysenbach, B., Gu, S., Ibarz, J., Levine, S.

6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

Videos link (url) Project Page [BibTex]

Videos link (url) Project Page [BibTex]


Tempered Adversarial Networks
Tempered Adversarial Networks

Sajjadi, M. S. M., Parascandolo, G., Mehrjou, A., Schölkopf, B.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

arXiv [BibTex]

arXiv [BibTex]


no image
Learning Coupled Forward-Inverse Models with Combined Prediction Errors

Koert, D., Maeda, G., Neumann, G., Peters, J.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 2433-2439, IEEE, May 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Learning Disentangled Representations with Wasserstein Auto-Encoders

Rubenstein, P. K., Schölkopf, B., Tolstikhin, I.

Workshop at the 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


no image
Automatic Estimation of Modulation Transfer Functions

Bauer, M., Volchkov, V., Hirsch, M., Schölkopf, B.

IEEE International Conference on Computational Photography (ICCP), May 2018 (conference)

ei sf

DOI [BibTex]

DOI [BibTex]


no image
Causal Discovery Using Proxy Variables

Rojas-Carulla, M., Baroni, M., Lopez-Paz, D.

Workshop at 6th International Conference on Learning Representations (ICLR), May 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Sample and Feedback Efficient Hierarchical Reinforcement Learning from Human Preferences

Pinsler, R., Akrour, R., Osa, T., Peters, J., Neumann, G.

IEEE International Conference on Robotics and Automation, (ICRA), pages: 596-601, IEEE, May 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Group invariance principles for causal generative models

Besserve, M., Shajarisales, N., Schölkopf, B., Janzing, D.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 557-565, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Boosting Variational Inference: an Optimization Perspective

Locatello, F., Khanna, R., Ghosh, J., Rätsch, G.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 84, pages: 464-472, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

ei

link (url) Project Page Project Page [BibTex]

link (url) Project Page Project Page [BibTex]


no image
Cause-Effect Inference by Comparing Regression Errors

Blöbaum, P., Janzing, D., Washio, T., Shimizu, S., Schölkopf, B.

Proceedings of the 21st International Conference on Artificial Intelligence and Statistics (AISTATS) , 84, pages: 900-909, Proceedings of Machine Learning Research, (Editors: Amos Storkey and Fernando Perez-Cruz), PMLR, April 2018 (conference)

ei

link (url) [BibTex]

link (url) [BibTex]


no image
Will People Like Your Image? Learning the Aesthetic Space

Schwarz, K., Wieschollek, P., Lensch, H. P. A.

2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages: 2048-2057, March 2018 (conference)

ei

DOI [BibTex]

DOI [BibTex]


no image
Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

Kim, J., Tabibian, B., Oh, A., Schölkopf, B., Gomez Rodriguez, M.

Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM), pages: 324-332, (Editors: Yi Chang, Chengxiang Zhai, Yan Liu, and Yoelle Maarek), ACM, Febuary 2018 (conference)

ei

DOI Project Page Project Page [BibTex]

DOI Project Page Project Page [BibTex]


RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials
RayNet: Learning Volumetric 3D Reconstruction with Ray Potentials

Paschalidou, D., Ulusoy, A. O., Schmitt, C., Gool, L., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
In this paper, we consider the problem of reconstructing a dense 3D model using images captured from different views. Recent methods based on convolutional neural networks (CNN) allow learning the entire task from data. However, they do not incorporate the physics of image formation such as perspective geometry and occlusion. Instead, classical approaches based on Markov Random Fields (MRF) with ray-potentials explicitly model these physical processes, but they cannot cope with large surface appearance variations across different viewpoints. In this paper, we propose RayNet, which combines the strengths of both frameworks. RayNet integrates a CNN that learns view-invariant feature representations with an MRF that explicitly encodes the physics of perspective projection and occlusion. We train RayNet end-to-end using empirical risk minimization. We thoroughly evaluate our approach on challenging real-world datasets and demonstrate its benefits over a piece-wise trained baseline, hand-crafted models as well as other learning-based approaches.

avg

pdf suppmat Video Project Page code Poster Project Page [BibTex]

pdf suppmat Video Project Page code Poster Project Page [BibTex]


no image
Functional Programming for Modular Bayesian Inference

Ścibior, A., Kammar, O., Ghahramani, Z.

Proceedings of the ACM on Functional Programming (ICFP), 2(Article No. 83):1-29, ACM, 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Automatic Bayesian Density Analysis

Vergari, A., Molina, A., Peharz, R., Ghahramani, Z., Kersting, K., Valera, I.

2018 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


End-to-end Recovery of Human Shape and Pose
End-to-end Recovery of Human Shape and Pose

Kanazawa, A., Black, M. J., Jacobs, D. W., Malik, J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 7122-7131, IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
We describe Human Mesh Recovery (HMR), an end-to-end framework for reconstructing a full 3D mesh of a human body from a single RGB image. In contrast to most current methods that compute 2D or 3D joint locations, we produce a richer and more useful mesh representation that is parameterized by shape and 3D joint angles. The main objective is to minimize the reprojection loss of keypoints, which allows our model to be trained using in-the-wild images that only have ground truth 2D annotations. However, the reprojection loss alone is highly underconstrained. In this work we address this problem by introducing an adversary trained to tell whether human body shape and pose parameters are real or not using a large database of 3D human meshes. We show that HMR can be trained with and without using any paired 2D-to-3D supervision. We do not rely on intermediate 2D keypoint detections and infer 3D pose and shape parameters directly from image pixels. Our model runs in real-time given a bounding box containing the person. We demonstrate our approach on various images in-the-wild and out-perform previous optimization-based methods that output 3D meshes and show competitive results on tasks such as 3D joint location estimation and part segmentation.

ps

pdf code project video Project Page [BibTex]

pdf code project video Project Page [BibTex]


Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients
Dissecting Adam: The Sign, Magnitude and Variance of Stochastic Gradients

Balles, L., Hennig, P.

In Proceedings of the 35th International Conference on Machine Learning (ICML), 2018 (inproceedings) Accepted

Abstract
The ADAM optimizer is exceedingly popular in the deep learning community. Often it works very well, sometimes it doesn't. Why? We interpret ADAM as a combination of two aspects: for each weight, the update direction is determined by the sign of stochastic gradients, whereas the update magnitude is determined by an estimate of their relative variance. We disentangle these two aspects and analyze them in isolation, gaining insight into the mechanisms underlying ADAM. This analysis also extends recent results on adverse effects of ADAM on generalization, isolating the sign aspect as the problematic one. Transferring the variance adaptation to SGD gives rise to a novel method, completing the practitioner's toolbox for problems where ADAM fails.

pn

link (url) Project Page [BibTex]

link (url) Project Page [BibTex]


Deep Marching Cubes: Learning Explicit Surface Representations
Deep Marching Cubes: Learning Explicit Surface Representations

Liao, Y., Donne, S., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Existing learning based solutions to 3D surface prediction cannot be trained end-to-end as they operate on intermediate representations (eg, TSDF) from which 3D surface meshes must be extracted in a post-processing step (eg, via the marching cubes algorithm). In this paper, we investigate the problem of end-to-end 3D surface prediction. We first demonstrate that the marching cubes algorithm is not differentiable and propose an alternative differentiable formulation which we insert as a final layer into a 3D convolutional neural network. We further propose a set of loss functions which allow for training our model with sparse point supervision. Our experiments demonstrate that the model allows for predicting sub-voxel accurate 3D shapes of arbitrary topology. Additionally, it learns to complete shapes and to separate an object's inside from its outside even in the presence of sparse and incomplete ground truth. We investigate the benefits of our approach on the task of inferring shapes from 3D point clouds. Our model is flexible and can be combined with a variety of shape encoder and shape inference techniques.

avg

pdf suppmat Video Project Page Poster Project Page [BibTex]

pdf suppmat Video Project Page Poster Project Page [BibTex]


Semantic Visual Localization
Semantic Visual Localization

Schönberger, J., Pollefeys, M., Geiger, A., Sattler, T.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, eg, in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes.

avg

pdf suppmat Poster Project Page [BibTex]

pdf suppmat Poster Project Page [BibTex]


Which Training Methods for GANs do actually Converge?
Which Training Methods for GANs do actually Converge?

Mescheder, L., Geiger, A., Nowozin, S.

International Conference on Machine learning (ICML), 2018 (conference)

Abstract
Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show that the requirement of absolute continuity is necessary: we describe a simple yet prototypical counterexample showing that in the more realistic case of distributions that are not absolutely continuous, unregularized GAN training is not always convergent. Furthermore, we discuss regularization strategies that were recently proposed to stabilize GAN training. Our analysis shows that GAN training with instance noise or zero-centered gradient penalties converges. On the other hand, we show that Wasserstein-GANs and WGAN-GP with a finite number of discriminator updates per generator update do not always converge to the equilibrium point. We discuss these results, leading us to a new explanation for the stability problems of GAN training. Based on our analysis, we extend our convergence results to more general GANs and prove local convergence for simplified gradient penalties even if the generator and data distributions lie on lower dimensional manifolds. We find these penalties to work well in practice and use them to learn high-resolution generative image models for a variety of datasets with little hyperparameter tuning.

avg

code video paper supplement slides poster Project Page [BibTex]


no image
k–SVRG: Variance Reduction for Large Scale Optimization

Raj, A., Stich, S.

In 2018 (inproceedings) Submitted

ei

[BibTex]

[BibTex]


no image
Probabilistic Deep Learning using Random Sum-Product Networks

Peharz, R., Vergari, A., Stelzner, K., Molina, A., Trapp, M., Kersting, K., Ghahramani, Z.

2018 (conference) Submitted

ei

arXiv [BibTex]

arXiv [BibTex]


Learning 3D Shape Completion from Laser Scan Data with Weak Supervision
Learning 3D Shape Completion from Laser Scan Data with Weak Supervision

Stutz, D., Geiger, A.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
3D shape completion from partial point clouds is a fundamental problem in computer vision and computer graphics. Recent approaches can be characterized as either data-driven or learning-based. Data-driven approaches rely on a shape model whose parameters are optimized to fit the observations. Learning-based approaches, in contrast, avoid the expensive optimization step and instead directly predict the complete shape from the incomplete observations using deep neural networks. However, full supervision is required which is often not available in practice. In this work, we propose a weakly-supervised learning-based approach to 3D shape completion which neither requires slow optimization nor direct supervision. While we also learn a shape prior on synthetic data, we amortize, ie, learn, maximum likelihood fitting using deep neural networks resulting in efficient shape completion without sacrificing accuracy. Tackling 3D shape completion of cars on ShapeNet and KITTI, we demonstrate that the proposed amortized maximum likelihood approach is able to compete with a fully supervised baseline and a state-of-the-art data-driven approach while being significantly faster. On ModelNet, we additionally show that the approach is able to generalize to other object categories as well.

avg

pdf suppmat Project Page Poster Project Page [BibTex]

pdf suppmat Project Page Poster Project Page [BibTex]


no image
A Differentially Private Kernel Two-Sample Test

Raj*, A., Law*, L., Sejdinovic*, D., Park, M.

2018, *equal contribution (conference) Submitted

ei

[BibTex]

[BibTex]


Learning Transformation Invariant Representations with Weak Supervision
Learning Transformation Invariant Representations with Weak Supervision

Coors, B., Condurache, A., Mertins, A., Geiger, A.

In International Conference on Computer Vision Theory and Applications, International Conference on Computer Vision Theory and Applications, 2018 (inproceedings)

Abstract
Deep convolutional neural networks are the current state-of-the-art solution to many computer vision tasks. However, their ability to handle large global and local image transformations is limited. Consequently, extensive data augmentation is often utilized to incorporate prior knowledge about desired invariances to geometric transformations such as rotations or scale changes. In this work, we combine data augmentation with an unsupervised loss which enforces similarity between the predictions of augmented copies of an input sample. Our loss acts as an effective regularizer which facilitates the learning of transformation invariant representations. We investigate the effectiveness of the proposed similarity loss on rotated MNIST and the German Traffic Sign Recognition Benchmark (GTSRB) in the context of different classification models including ladder networks. Our experiments demonstrate improvements with respect to the standard data augmentation approach for supervised and semi-supervised learning tasks, in particular in the presence of little annotated data. In addition, we analyze the performance of the proposed approach with respect to its hyperparameters, including the strength of the regularization as well as the layer where representation similarity is enforced.

avg

pdf [BibTex]

pdf [BibTex]


Lions and Tigers and Bears: Capturing Non-Rigid, {3D}, Articulated Shape from Images
Lions and Tigers and Bears: Capturing Non-Rigid, 3D, Articulated Shape from Images

Zuffi, S., Kanazawa, A., Black, M. J.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 2018, 2018 (inproceedings)

Abstract
Animals are widespread in nature and the analysis of their shape and motion is important in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. Consequently, we propose a method to capture the detailed 3D shape of animals from images alone. The articulated and deformable nature of animals makes this problem extremely challenging, particularly in unconstrained environments with moving and uncalibrated cameras. To make this possible, we use a strong prior model of articulated animal shape that we fit to the image data. We then deform the animal shape in a canonical reference pose such that it matches image evidence when articulated and projected into multiple images. Our method extracts significantly more 3D shape detail than previous methods and is able to model new species, including the shape of an extinct animal, using only a few video frames. Additionally, the projected 3D shapes are accurate enough to facilitate the extraction of a realistic texture map from multiple frames.

ps

pdf code/data 3D models Project Page [BibTex]

pdf code/data 3D models Project Page [BibTex]


no image
Denotational Validation of Higher-order Bayesian Inference

Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss, S. K., Heunen, C., Ghahramani, Z.

Proceedings of the ACM on Principles of Programming Languages (POPL), 2(Article No. 60):1-29, ACM, 2018 (conference)

ei

DOI Project Page [BibTex]

DOI Project Page [BibTex]