Header logo is


2017


no image
Surface tension-driven self-alignment

Mastrangeli, M., Zhou, Q., Sariola, V., Lambert, P.

Soft Matter, 13, pages: 304-327, The Royal Society of Chemistry, 2017 (article)

Abstract
Surface tension-driven self-alignment is a passive and highly-accurate positioning mechanism that can significantly simplify and enhance the construction of advanced microsystems. After years of research{,} demonstrations and developments{,} the surface engineering and manufacturing technology enabling capillary self-alignment has achieved a degree of maturity conducive to a successful transfer to industrial practice. In view of this transition{,} a broad and accessible review of the physics{,} material science and applications of capillary self-alignment is presented. Statics and dynamics of the self-aligning action of deformed liquid bridges are explained through simple models and experiments{,} and all fundamental aspects of surface patterning and conditioning{,} of choice{,} deposition and confinement of liquids{,} and of component feeding and interconnection to substrates are illustrated through relevant applications in micro- and nanotechnology. A final outline addresses remaining challenges and additional extensions envisioned to further spread the use and fully exploit the potential of the technique.

pi

link (url) DOI [BibTex]

2017


link (url) DOI [BibTex]


Thumb xl imagetoc
A Deep Learning Based 6 Degree-of-Freedom Localization Method for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Konukoglu, E., Sitti, M.

arXiv preprint arXiv:1705.05435, 2017 (article)

Abstract
We present a robust deep learning based 6 degrees-of-freedom (DoF) localization system for endoscopic capsule robots. Our system mainly focuses on localization of endoscopic capsule robots inside the GI tract using only visual information captured by a mono camera integrated to the robot. The proposed system is a 23-layer deep convolutional neural network (CNN) that is capable to estimate the pose of the robot in real time using a standard CPU. The dataset for the evaluation of the system was recorded inside a surgical human stomach model with realistic surface texture, softness, and surface liquid properties so that the pre-trained CNN architecture can be transferred confidently into a real endoscopic scenario. An average error of 7.1% and 3.4% for translation and rotation has been obtained, respectively. The results accomplished from the experiments demonstrate that a CNN pre-trained with raw 2D endoscopic images performs accurately inside the GI tract and is robust to various challenges posed by reflection distortions, lens imperfections, vignetting, noise, motion blur, low resolution, and lack of unique landmarks to track.

pi

link (url) Project Page [BibTex]


Thumb xl publications toc
Deep EndoVO: A Recurrent Convolutional Neural Network (RCNN) based Visual Odometry Approach for Endoscopic Capsule Robots

Turan, M., Almalioglu, Y., Araujo, H., Konukoglu, E., Sitti, M.

ArXiv e-prints, 2017 (article)

Abstract
Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for inspection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical device companies and many research groups have recently made substantial progresses in converting passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intuitive detection of the location and size of the diseased areas. Since a reliable real time pose estimation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our method lies on the application of the deep Recurrent Convolutional Neural Networks (RCNNs) for the visual odometry task, where Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) are used for the feature extraction and inference of dynamics across the frames, respectively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system achieves high translational and rotational accuracies for different types of endoscopic capsule robot trajectories.

pi

link (url) Project Page [BibTex]

2013


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,651 (misc)

pi

[BibTex]

2013


[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent App. 14/016,683 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods for making dry adhesives

Sitti, M., Kim, S.

sep 2013, US Patent 8,524,092 (misc)

pi

[BibTex]

[BibTex]


no image
Dry adhesives and methods of making dry adhesives

Sitti, M., Murphy, M., Aksak, B.

March 2013, US Patent App. 13/845,702 (misc)

pi

[BibTex]

[BibTex]


no image
Angular Motion Control Using a Closed-Loop CPG for a Water-Running Robot

Thatte, N., Khoramshahi, M., Ijspeert, A., Sitti, M.

In Dynamic Walking 2013, (EPFL-CONF-199763), 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Two-dimensional magnetic micro-module reconfigurations based on inter-modular interactions

Miyashita, S., Diller, E., Sitti, M.

The International Journal of Robotics Research, 32(5):591-613, SAGE Publications Sage UK: London, England, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Contact compliance effects in the frictional response of bioinspired fibrillar adhesives

Piccardo, M., Chateauminois, A., Fretigny, C., Pugno, N. M., Sitti, M.

Journal of The Royal Society Interface, 10(83):20130182, The Royal Society, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Co-chairs

VINCENT, Julian, ZHU, Di, DAI, Zhendong, CHEN, Da, JIANG, Lei, KANG, Le, REN, Luquan, XUE, Qunji, Zhao, Chunsheng, BARNES, Jon, others

2013 (article)

pi

[BibTex]

[BibTex]


no image
Topological Control of Cell Sheet Migration by the 3D Microenvironment

Song, J., Kim, Y. T., Hazar, M., LeDuc, P. R., Davidson, L. A., Sitti, M.

Biophysical Journal, 104(2):147a, Elsevier, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Independent control of multiple magnetic microrobots in three dimensions

Diller, E., Giltinan, J., Sitti, M.

The International Journal of Robotics Research, 32(5):614-631, SAGE Publications Sage UK: London, England, 2013 (article)

pi

[BibTex]

[BibTex]


no image
A hybrid topological and structural optimization method to design a 3-DOF planar motion compliant mechanism

Lum, G. Z., Teo, T. J., Yang, G., Yeo, S. H., Sitti, M.

In Advanced Intelligent Mechatronics (AIM), 2013 IEEE/ASME International Conference on, pages: 247-254, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Modular micro-robotic assembly through magnetic actuation and thermal bonding

Diller, E., Zhang, N., Sitti, M.

Journal of Micro-Bio Robotics, 8(3-4):121-131, Springer Berlin Heidelberg, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Behavior as broken symmetry in embodied self-organizing robots

Der, R., Martius, G.

In Advances in Artificial Life, ECAL 2013, pages: 601-608, MIT Press, 2013 (incollection)

al

[BibTex]

[BibTex]


no image
Information Driven Self-Organization of Complex Robotic Behaviors

Martius, G., Der, R., Ay, N.

PLoS ONE, 8(5):e63400, Public Library of Science, 2013 (article)

al

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Light-induced microbubble poration of localized cells

Fan, Qihui, Hu, Wenqi, Ohta, Aaron T

In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pages: 4482-4485, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
A simulation and design tool for a passive rotation flapping wing mechanism

Arabagi, V., Hines, L., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 18(2):787-798, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
GECKO-INSPIRED POLYMER ADHESIVES

Menguc, Yigit, Metin, Metin

Polymer Adhesion, Friction, and Lubrication, pages: 351, Wiley, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Near and far-wall effects on the three-dimensional motion of bacteria-driven microbeads

Edwards, M. R., Wright Carlsen, R., Sitti, M.

Applied Physics Letters, 102(14):143701, AIP, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
SoftCubes: towards a soft modular matter

Yim, S., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 530-536, 2013 (inproceedings)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Magnetically Actuated Soft Capsule With the Multimodal Drug Release Function

Yim, S., Goyal, K., Sitti, M.

IEEE/ASME Trans. on Mechatronics, 18(4):1413-1418, IEEE, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Tank-like module-based climbing robot using passive compliant joints

Seo, T., Sitti, M.

IEEE/ASME Transactions on Mechatronics, 18(1):397-408, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Flapping wings via direct-driving by DC motors

Azhar, M., Campolo, D., Lau, G., Hines, L., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 1397-1402, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Three dimensional independent control of multiple magnetic microrobots

Diller, E., Giltinan, J., Jena, P., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2576-2581, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Enhanced fabrication and characterization of gecko-inspired mushroom-tipped microfiber adhesives

Song, J., Mengüç, Y., Sitti, M.

Journal of Adhesion Science and Technology, 27(17):1921-1932, Routledge, 2013 (article)

pi

Project Page [BibTex]

Project Page [BibTex]


no image
Linear combination of one-step predictive information with an external reward in an episodic policy gradient setting: a critical analysis

Zahedi, K., Martius, G., Ay, N.

Frontiers in Psychology, 4(801), 2013 (article)

Abstract
One of the main challenges in the field of embodied artificial intelligence is the open-ended autonomous learning of complex behaviours. Our approach is to use task-independent, information-driven intrinsic motivation(s) to support task-dependent learning. The work presented here is a preliminary step in which we investigate the predictive information (the mutual information of the past and future of the sensor stream) as an intrinsic drive, ideally supporting any kind of task acquisition. Previous experiments have shown that the predictive information (PI) is a good candidate to support autonomous, open-ended learning of complex behaviours, because a maximisation of the PI corresponds to an exploration of morphology- and environment-dependent behavioural regularities. The idea is that these regularities can then be exploited in order to solve any given task. Three different experiments are presented and their results lead to the conclusion that the linear combination of the one-step PI with an external reward function is not generally recommended in an episodic policy gradient setting. Only for hard tasks a great speed-up can be achieved at the cost of an asymptotic performance lost.

al

link (url) DOI [BibTex]


no image
A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive

Daler, L., Klaptocz, A., Briod, A., Sitti, M., Floreano, D.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Micro-scale mobile robotics

Diller, E., Sitti, M.

Foundations and Trends in Robotics, 2(3):143-259, Now Publishers Incorporated, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Survey and Introduction to the Focused Section on Bio-Inspired Mechatronics

Sitti, M., Menciassi, A., Ijspeert, A., Low, K. H., Kim, S.

Mechatronics, IEEE/ASME Transactions on, 18(2):409-418, DOI: 10.1109/TMECH.2012. 2233492, 2013 (article)

pi

[BibTex]

[BibTex]


no image
Bonding methods for modular micro-robotic assemblies

Diller, E., Zhang, N., Sitti, M.

In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages: 2588-2593, 2013 (inproceedings)

pi

[BibTex]

[BibTex]


no image
Robustness of guided self-organization against sensorimotor disruptions

Martius, G.

Advances in Complex Systems, 16(02n03):1350001, 2013 (article)

Abstract
Self-organizing processes are crucial for the development of living beings. Practical applications in robots may benefit from the self-organization of behavior, e.g.~to increase fault tolerance and enhance flexibility, provided that external goals can also be achieved. We present results on the guidance of self-organizing control by visual target stimuli and show a remarkable robustness to sensorimotor disruptions. In a proof of concept study an autonomous wheeled robot is learning an object finding and ball-pushing task from scratch within a few minutes in continuous domains. The robustness is demonstrated by the rapid recovery of the performance after severe changes of the sensor configuration.

al

DOI [BibTex]

DOI [BibTex]


no image
In vivo diabetic wound healing with nanofibrous scaffolds modified with gentamicin and recombinant human epidermal growth factor

Dwivedi, C., Pandey, I., Pandey, H., Patil, S., Mishra, S. B., Pandey, A. C., Zamboni, P., Ramteke, P. W., Singh, A. V.

Journal of Biomedical Materials Research Part A, 106(3):641-651, March (article)

Abstract
Abstract Diabetic wounds are susceptible to microbial infection. The treatment of these wounds requires a higher payload of growth factors. With this in mind, the strategy for this study was to utilize a novel payload comprising of Eudragit RL/RS 100 nanofibers carrying the bacterial inhibitor gentamicin sulfate (GS) in concert with recombinant human epidermal growth factor (rhEGF); an accelerator of wound healing. GS containing Eudragit was electrospun to yield nanofiber scaffolds, which were further modified by covalent immobilization of rhEGF to their surface. This novel fabricated nanoscaffold was characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction. The thermal behavior of the nanoscaffold was determined using thermogravimetric analysis and differential scanning calorimetry. In the in vitro antibacterial assays, the nanoscaffolds exhibited comparable antibacterial activity to pure gentemicin powder. In vivo work using female C57/BL6 mice, the nanoscaffolds induced faster wound healing activity in dorsal wounds compared to the control. The paradigm in this study presents a robust in vivo model to enhance the applicability of drug delivery systems in wound healing applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 641–651, 2018.

pi

link (url) DOI [BibTex]


link (url) DOI [BibTex]


no image
Robotics Research

Tong, Chi Hay, Furgale, Paul, Barfoot, Timothy D, Guizilini, Vitor, Ramos, Fabio, Chen, Yushan, T\uumová, Jana, Ulusoy, Alphan, Belta, Calin, Tenorth, Moritz, others

(article)

pi

[BibTex]

[BibTex]